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ABSTRACT
A well-known result of S. N. Bernstein states that a Chebyshev

quadrature formula of the form

1 2 n
[ feodx == ¥ f(t,) + R (0, t real ,

-3 | g
can have algebraic degree of exactness p =n only if 1 <n<7 or
n =9 . The nodes tk are necessarily symmetric with respect to the
origin, so that in fact p = 2[n/2}+ 1. If symmetry of the nodes is im-
posed, it is known from work of Gautschi and Yanagiwara and others that
next-to-highest algebraic degree p = 2[n/2] - 1, beyond the classical
cases above, can be attained only when n = 8, 10, 11, and 13. For

these values of n, "optimal" formulas have been obtained which mini-

mize an(xp+1)| among all symmetric Chebyshev quadratures of degree

p = 2[n/2] - 1. We show here that these same formulas in fact minimize
iRn(xi)( foreach i >p+1.
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ON OPTIMAL CHEBYSHEV-TYPE QUADRATURES

Walter Gautschi and Giovanni Monegato

1. I_ntroduction. We consider symmetric Chebyshev-type quadrature
formulas of "next-to-highest" algebraic degree of exactness, i.e., equally
weighted quadrature formulas of the form

; 7
(1.1 [ f(x)dx - =

o9s

f(t,) + R ()
1

subject to the following constraints,

f
all tk are real, t1 th Plews Ztn %
(1. 2) é tn+1-k + tk = 0, k=142,...,n (symmetry),
Rn(f) = 0 for every polynomial f of degree p = 2[n/2] -1.

% If 1<n<7, or n=9, the classical Chebyshev quadratures satisfy all
: these conditions, the last one in the strengthened form with p = 2[n/2] +1.
Other Chebyshev-type formulas, satisfying (l.2), exist only for n = 8, 10,

11, and 13. This is shown in [6] and [1], where formulas are derived that

i are "optimal" in the sense of minimizing

p+l

(1. 3) pltytyy.eept )= [R 0 ), p=2[n/2]-1,

Sponsored by the United States Army under Contract No. DAAG29-75-C-
0024, the National Science Foundation under grant MCS 76-00842 and the
Italian Research Council.
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subject to (1.2). Each of these formulas has one pair of symmetric double
nodes, or one double node at the origin, which (regretfully) means loss of
the equal coefficient property. We will show here that these same formulas

are in fact optimal in the much wider sense of minimizing
. & i
(1. 4) pyltystyyeneyt ) = an(x )| foreach i >p+1

subject to (1.2). (For odd integers {, the statement is trivially true,
since Py = 0 by virtue of symmetry.) In particular, they are minimum norm
quadratures in the Hardy space H2 of functions f(z) analytic in |z| <T,

r >1, and square-integrable on [z] = r, since these quadratures minimize
0

¥ r-zj[Rn(xj)]z (see, e.g., [2]).
j=p+l

As a preliminary step toward these results, we first show that for
each n = 8, 10, 11, 13, the set of all Chebyshev-type quadrature formulas
(1. 1), satisfying (l.2), forms a one-parameter family, with parameter a in
some finite closed interval )‘n <ws B By using symbolic Sturm sequences,
we are able to identify xn and b, as roots of certain algebraic equations.
The quadrature formulas corresponding to xn <a< L all have n distinct
(simple) nodes in the interval (-1,1), while those corresponding to o = xn
of @ = Pn have a pair of symmetric double nodes, or a double node at the
origin. The main result then follows from a (possibly new) monotonicity
property satisfied by the power sums of the zeros of a polynomial. In par-
ticular, it transpires that the optimal formulas [in the general sense of

minimizing (1.4)] always occur at a = xn . They are necessarily identical

with the optimal formulas found in [6] and [1].

-
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2. One-parameter families of Chebyshev-type quadratures. We

n

£x) =11

k=1

satisfy (1. 2) if and only if

(2.1)  E&x)=

where o« is some real parameter

associate with (1.1) the polynomial

n
(x-tk) =x + alx

From Newton's identities it follows that the (real ordered) nodes t

S8 i G G X +a (neven)

n-3

(p = 2[n/2]-1) are given uniquely by
s, + ?_az =0,
4 s4+azsz+4a4=0 .
B + azsp_3 ... t ap_3s2
|
where
n . 2j n
e flt arEseir 1

It remains to determine the conditions on « under which the polynomial §

in (2.1) has only real zeros.

£(x) =

Letting

§*(x2) (n even)
x¢"®)  (n odd)

3=

e G x3+ax (n odd)

and the coefficients a

n-1

i sisie G
n

K will

’

’

2283

+ (p-l)ap_1 =0 ,

=2y oy tolife

’
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we are seeking the conditions on o« under which the polynomial

* v v-l
! = - 2
(2,3} £ (X) = x +a,Xx + ta, X o, - veini2] ,

has only nonnegative zeros. While the problem could easily be discussed
in geometric terms, we prefer to take an algebraic approach via Sturm
sequences. Among other things, this allows us to identify the limits on
the parameter o as roots of certain algebraic equations with integer co-
efficients.

We recall that the Sturm sequence of a polynomial po of degree v is
the result of applying Euclid's algorithm to po and pl = pb, where p'o is

the derivative of p0 . Thus,

rpoqupl "pz )
P =9,P; - Py

(2. 4) < S o Sl
Prad ™ YrPec = Py 0

& Pray T 9P o

where 7 < v, and each p, 2 <k <7, is the negativeremainder of the
= - =

division of pK by pK_1 . Sturm's theorem (see, e.g., [3, p. 448))

-2
then asserts that for any a <b, if po(a) po(b) #+ 0, the number of distinct
zeros of p0 in [a, b] is equal to v(a) - v(b), where v(x), for fixed x,
is the number of sign changes in the numerical sequence po(x), pl(x), Vreray
pT(x) . Moreover, if x0 is a (real or complex) zero of po, then its

multiplicity is m if and only if x_ is a zero of the terminal polynomial

0

. -




in [a, b] are

P of multiplicity m-1. In particular, all zeros of po
simple if and only if p_ has no zeros in [a,b] .

In wishing to apply this to the polynomial po = g* in (2. 3), one has
to be prepared to operate on polynomials whose coefficients depend rationally
on the parameter « . This is best done with the help of symbolic formula
manipulation systems. We indeed generated the Sturm sequences symbolic-
ally, using the MACSYMA system available to one of us at Stanford
University, and repeating the computations with the SAC-1 system on the
UNIVAC 1110 computer at the University of Wisconsin. The results of both
computations weré identical, and are summarized below.

Writing

p(x)=c x "+c¢ Dt - e 0,1
= i D
K K K K, ktl Ky’ o 4

the coefficients S\ k <\, are polynomials or rational functions of «,
with rational coefficients, the degrees of which are as indicated in the
schedules below. Zero degree always represents a non-vanishing (rational)
constant; slashes separate numerator degree from denominator degree in case
of rational functions. In all rational functions on the diagonal, the denomi-
nator polynomial is the square of the numerator polynomial in the rational

n=8 (v=4) n=10, 11 (v=5) n=1

00 0

0 0
00
0

0
0

O OO

- O O O
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function preceding it on the diagonal. The numerator polynomials in the term-
inal entries are irreducible over the field of rationals, except in the case of

n = 13, where the numerator polynomial of c factors into the square of a

66
linear polynomial and a polynomial of degree five.
s
According to Sturm's theorem, the polynomial § has v distinct

positive zeros (necessarily all simple) if and only if v(0) = v and v(®) = 0,

that is, if and only if

(2. 5) e >0 and (-I)V-Kc =0 for w=10,12, ...,%

KV

By examining the explicit form of these (polynomial) inequalities for the

four values of n under study, one finds that (2. 5) is equivalent to

(2.6) )\n<a<pn,

where )\n and b, are either zero, or equal to one of the zeros

a(n) < a(n) < a(n) < wete  OF cw(a), as indicated in Table 2.1. Numerical

1 o %y
i M Hn
8 0 0(28)
10 a(zlo) 0
11 a;_“) agu)
o o ﬁ

Table 2.1, Parameter intervals for symmetric
Chebyshev-type formulas of next-to-highest
degree

-6-
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N
values of N , p , and the numerator polynomial c¢ of e in exact
n n vv vv

integer form (of which «

(n)  (n)
a

are zeros) are shown below.
Pl !

By verifying that v(l) = v(») = 0 for « in the interval (2.6), one

¥*
finds that all v zeros of & are in fact strictly between 0 and 1.

e
c»H(U)

‘g

11

11

m=8

10766 16428343750° _ 17 39295676125a2 + 1639058085a + 1698929
0
1.696315226301022019273508 X 10"

o= 10

= 10383610167954115312504 - 699972937051972500&3

- 1183794 10645986012 + 59483935980a + 10026277
-1.70502634454 1702458795446 X 10-4
0

nE==ll

= 4355201766189061767 168000000000000000014

-1374865848405472650264 5760000000000013
-325179089998374326256267 26400000012
-17819369567349884423809920000a - 2271280061895695934118607

-7.231729443377509440273227 X 10-4

-1.843814365405786592111158 X 10-4

t For n =13, only the factor (of degree 5) of ctlv is shown which is
relevant.

el




n= 13

5
0216(0) = -5119431238238006449001030897982132062886297600000000000000¢

+172040302944737177389379925598908536 17729‘336000000000000(14

-9038664271054821687671987 18813676919 1568998400000000(13
+18029285809619921776960292383 18998369583104000000u2
-155695987491956246845496029654386927806054400a
+4909413559683598477099364350584692815757

1.024260940958103474931671 X 10'4

>
I

13

1.325979284585333715590553 X 10‘4

T
"

13

The Sturm sequence terminates prematurely [i.e., T < v in (2.4))
if and only if o is a zero of one of the diagonal entries CKK . We ex-
amined the Sturm sequence in each one of these cases and found, as ex-
pected, that g* has the desired number of nonnegative zeros precisely
when o is a nonzero endpoint of the parameter intervals in Table 2. 1.

In each case, g* has one double zero and v -2 simple zeros in the
open interval (0,1) .

The remaining endpoint o = 0 in the cases n=8 and n =10 can
be handled by forming the Sturm sequences at x = ¢ > 0 sufficiently small,
and at x=1. One finds v -1 simple zeros of g* in (0,1), which
together with the zero at x = 0 again yields the desired number of zeros

in [0,1) .

We may summarize our findings in terms of the polynomial ¢ in

(2.1) as follows; If n =8, 10, 11, or 13, the polynomial £ has n real

-8-




(symmetric) zeros, counting multiplicities, exactly if ¢ is in the interval

\n Lax I If ¢ is an interior point of that interval, all zeros of ¢ are

in fact simple and contained in the open interval (-1,1). If « is one of

the endpoints of [\n,pn], then ¢ has a pair of (symmetric) double zeros

in (-1, 1), if «# 0, and a double zero at the origin, if « = 0, all other

zeros being simple and located in (-1,1) .

The intervals [xn, p.n] found here are in agreement with the (less
accurate) intervals given in [4, Table I] for n = 8, 10, and 11. Our results
for n=8 and n = 10 contradict a theorem of Pecka [5], which indeed is

false because of computational errors in the proof.

3. Optimal Chebyshev-type formulas. In each one-parameter

family of Chebyshev-type quadratures, obtained in Section 2, we now wish
to single out one that minimizes the objective function P in (1.4). We

*
may assume i =2j, with j >v, where v =[n/2]. Letting tK(a) de-

note the zeros of g*, and

*

v
si@ =Y [t@),
k=1

j 3 8 R
their power sums, and assuming xn <a< Moo the objective function is

easily found to be

n

z@ " 12

3.1 ) == e
(') pzj(a)‘n Sj(d)-

%k
We thus wish to minimize pzj(a) on the interval xn <eae< S The
lemmas which follow will lead us to the solution of this problem.

-




Lemma 3. 1. Suppose the algebraic equation

m m-1
:= +c X W +e_ =10
g(x) := x Cl . (s ’lx c

with real coefficients ¢ , has m distinct nonnegative roots x, = x, (c

k A

s et sj denote their j-th power sum,

m .
]
sj(cl,cz,...,cm) = Z [xk(cl,cz,...,cm)] R D
o=

Then

(3.2) PR e S

Proof. Since, by Newton's identities, sj depends only on
CppCyseesCoy the second half of (3. 2) is self-evident. It suffices,
2 )
therefore, to consider j >pu, 1<p <m.,

Differentiating the identity g(xk(cl, Coyeeny cm)) = 0 with respect to

c , one finds
V8

m-p m-p
Bxk : xk K xk
aC L Y X e me s ’
B o 1T 5 ~5)
£+k
hence
8Sj m i-1 8xk m x;(n-w'j-l
(3.3 & 1L % wmo=dl
" k=1 M k=1 W(xk-xl)
L #k

The sum on the far right is precisely the (m-1)-st divided difference

m-ptj-l1

[xl, TR xm]f of the function f(x) = x Since

«]10=




f(m_l)

m- MJ 1) <j-p

L SN (x)/(m-1)1 = ( , where x is in the

open interval spanned by x X and since all x, >0, it follows

P Xorees K

that x > 0, and the sum in question is positive. This proves the lemma.

0s
We remark that the proof of Lemma 3.1 also yields 3—C—j >0 MM 3=0,
M
if we assume all x> 0, but we will not need this fact in what follows.

k
Lemma 3.2. If n =8, 10, 11, or 13, we have

b
(3. 4) Sj“‘n) <

for § v

e N
2(2j+1)

Proof. Since the quadrature formula (l.1) has polynomial degree of

2v-2

exactness p = 2v-l, it is certainly exact for f(x) = x , which yields
* n
(3.5) Sv=l " 2wy
For any j >v, we have
* Y % jev4l o % v-1 j-v+l *
= <ac<
s, (@) KZ_I (@ " @] < @P s n <a<u

-3 sk
where t1 (2) is the largest among the roots tK(a) . The lemma will hold

for any value of j for which

j-v+l * n
[t (k0 Sonl " 22140)

By virtue of (3. 5), this is equivalent to

e
1 J-vtl

%
(3. 6) t) (A ) <

2j+l




An elementary computation shows that the right-hand expression in
(3. 6) is an increasing function of j for ] >v.i By consulting the numerical
values of tl(xn) in (1], and noting that tr(xn) = [tl(xn)]z, it is possible
to verify the validity of (3. 6) for j = v+2 when n =8, for j = v+3 when
n=10, for j=v+4 when n=1], and for j = v+5 when n =13. The
inequality therefore holds for these and all larger values of j . For the
few remaining values of j, one can verify (3.4) directly, from the data
available in [1]. This completes the proof of Lemma 3. 2.

ok
The problem of minimizing pzj(a) in (3.1) is now easily solved.

Theorem 3.1. If n =8, 10, 11, or 13, then for each j >v ,
i : f < a <
<
(3.7) pzj(kn) pzj(a) for X s = A,

_Pia_o_f; applying Lemma 3.1 to the polyncmiial g* in (2. 3), the
zeros of which are tj( @), we find that each s;k(oz), j>v, is strictly
decreasing on )\n <a< p, hence

* *
(3. 8) sj(a)<sj(xn) for \n<a§pn
Combining (3. 8) with Lemma 3. 2 gives

%
s, (a) <

n
j Sepan? no o= tn oo

s«
for each j > v . Since sj (¢) decreases on )‘n <a< Moo it follows that

*
pzj(a) is an increasing function of a, hence (3.7).

Corollary. Let {Wj} be any sequence of weights w >0, with

wj >0 for some J >v, satisfying

]2 =

, |




(3.9)

and let

(3.10)

Then

(3.11)

Proof.

0
3% * 2
p (a) = jz:v wj[pzj(a)] : xn_<. (Ii .“'n'

* *
A ) < for N < a<
SRS B B R

* * *
Since s,(«a) < u[t1 (a)]j, where tl(a) is the largest among

j

* *
the roots tK(a), and since t] (2) <1 for LS e p, the sequence

%

j

as j = oo .

* 3
s, (a) tends to zero at least geometrically, and consequently pzj(oz) ~j

The infinite series in (3.10), therefore, converges by virtue

of (3.9), and (3.11) is an immediate consequence of (3.7).

=13«
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Gautschi and Yanagiwara and others that next-to-highest algebraic

degree p =2[n/2] -1, beyond the classical cases above, can be

attained only when n = 8, 10, 11, and 13. For these values of n ,

"optimal" formulas have been obtained which minimize IRn(xp+l)|
among all symmetric Chebyshev quadratures of degree p = 2[n/2]-1.
We show here that these same formulas in fact minimize IRn(xi)l

for each LDkl




